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Abstract: We address the size of supersymmetry-breaking effects within string theory

settings where the observable sector resides deep within a strongly warped region, with su-

persymmetry breaking not necessarily localized in that region. Our particular interest is in

how the supersymmetry-breaking scale seen by the observable sector depends on this warp-

ing. We focus concretely on type IIB flux compactifications and obtain this dependence

in two ways: by computing within the microscopic string theory supersymmetry-breaking

masses in Dp-brane supermultiplets; and by investigating how warping gets encoded into

masses within the low-energy 4D effective theory. We identify two different ways to identify

‘the’ 4D gravitino in such systems — the state whose supersymmetry is the least broken,

and the state whose couplings are the most similar to the 4D graviton’s — and argue that

these need not select the same state in strongly warped settings. We formulate the con-

ditions required for the existence of a description in terms of a 4D SUGRA formulation,

or in terms of 4D SUGRA together with soft-breaking terms, and describe in particular

situations where neither exist for some non-supersymmetric compactifications. We suggest

that some effects of warping are captured by a linear A dependence in the Kähler potential.

We outline some implications of our results for the KKLT scenario of moduli stabilization

with broken SUSY.
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1. Introduction

Understanding how supersymmetry breaks has been a Holy Grail for string theorists for

decades, because it is likely a crucial prerequisite for understanding string theory’s low-

energy predictions. Like the search for the Grail this has proven to be an elusive quest,

complicated as it is by related issues of modulus stabilization. Considerable progress has

come recently, however, with the recognition that Type IIB string vacua can stabilize many

moduli in the presence of fluxes [1, 2].

The remarkable properties of the warped compactifications to which these studies lead

open up potentially interesting new possibilities for constructing phenomenologically at-

tractive string vacua, both for applications to particle physics [3] and to cosmology [4].
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They do so for several reasons. First, by providing a plausible setting in which all moduli

may be fixed [2, 5] they provide a concrete laboratory within which to compute how super-

symmetry breaks. This potentially represents a great leap forward since it allows one to

deal with a serious drawback of previous calculations of supersymmetry-breaking effects for

string vacua (for a review see [6]). Because these earlier calculations did not construct the

potential which stabilized the various moduli, they could not determine the values of the

moduli. In particular, they could not address whether or not supersymmetry was restored

at a minimum of the moduli potential, as is very often the case in practice.

The second reason these warped compactifications have been so intriguing for phe-

nomenology is that they can contain strongly-warped regions (‘throats’) within which the

energies of localized states can be strongly suppressed by gravitational redshift. This pos-

sibility is very interesting since the energy gained by localization can dominate the energy

cost due to the gradients which the localization requires. This can dramatically change

the kinds of states which dominate the low-energy world, with localized states often being

preferred over those which spread to fill all of the compact dimensions. Among the conse-

quences of this observation is the possibility of having new ways to obtain large hierarchies

of scale, such as by having all Standard Model degrees of freedom localized in a region

of strong warping [7 – 10]. It also opens up new ways for energy to be efficiently chan-

nelled into such throats, potentially providing new ways to think about reheating during

early-universe cosmology [11, 12].

Our goal in this paper is to analyze the size of supersymmetry-breaking effects within

highly-warped compactifications of string theory, with emphasis on when the low-energy

physics can be captured by an effective 4D description, and on how this description depends

on the underlying scales. We focus on supersymmetry breaking triggered by nonzero (0,3)

bulk fluxes within Type IIB vacua (for related work in this direction see [13]), and where

necessary we imagine matter fields are identified with open-string degrees of freedom in the

world-volume of D-branes, being suitably described at low energies by the corresponding

Dirac-Born-Infeld and Chern-Simons actions. Within this framework we follow how super-

symmetry breaking depends on three important parameters: ϑ the strength of supersym-

metry breaking fluxes;1 eAm the minimal value of warping, as well as the compactification

volume, V = V/α′3.

While reproducing standard results in the limit of small warping, we find several in-

teresting differences when the warping is large. In particular, two natural criteria for

identifying ‘the’ gravitino of the low-energy 4D theory point to different states. The first of

these, the criterion of the least broken supersymmetry, selects the lightest of all gravitino

Kaluza-Klein (KK) modes (or equivalently, the gravitino state which becomes massless if

supersymmetry breaking is adiabatically switched off). In the presence of strong warping

we argue that the wave-function for this state is localized within the strongly warped re-

gion, as is generically true for KK modes [14 – 16]. However, because of this strong warping

the strength of the interactions of this state are generically set by a warped mass scale,

which can be much smaller than the 4D Planck mass, Mp. This is what makes this state

1ϑ will correspond to W0 in the regime that a 4D effective description is valid.
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differ in general with the state selected by the second criterion: that whose interactions

are most similar to the massless 4D graviton.

What we find echoes what is known about supersymmetry breaking in Randall-

Sundrum geometries, as has been extensively studied in the context of S1/Z2 orbifold

compactifications of 5D gauged supergravity on AdS backgrounds [17 – 19]. In these se-

tups, the observable (Standard Model) sector generically resides on the infrared brane, at

the strongly warped end of the orbifold, and supersymmetry breaking is mediated by the

radial modulus and/or the Weyl anomaly. Both of the gravitino states described above

have a simple physical interpretation in these models when the dual CFT description of the

throat is used, with the lightest gravitino describing a spin-3/2 resonance of the strongly

interacting CFT dynamics (which gauges an emergent supersymmetry, not simply related

to the supersymmetry of the constituent states). In this instance it is the second criterion

which gives the gravitino which partners the graviton in its couplings to the ‘constituent’

CFT degrees of freedom.

Although we argue that generically a 4D description need not be possible for strongly

warped systems, when it is we find that strong warping alters the resulting low-energy

Kähler potential for Type IIB string compactifications. We identify a universal contribution

of this kind, which leads to exponential suppressions for F-terms in the low-energy theory.

This is similar to what is seen for supersymmetric RS systems [20], where more explicit

forms for the warping-induced modifications to the Kähler potential are possible because

of the simplicity of the underlying 5D AdS geometry.

Our presentation comes in two parts. In the next section, 2, we provide a generic semi-

quantitative discussion of the scales which arise in supersymmetry-breaking compactifica-

tions with warped extra dimensions. (Although some estimates and explicit calculations

of supersymmetry breaking scales have been made elsewhere [21], these focus on only one

of the two types of 4D gravitino mentioned above.) This section also gives insights on how

the lightest gravitino mass undergoes warping suppression, illustrating the phenomenon

with the aid of a scalar field toy model. We provide here a criterion for when to expect the

low-energy limit to be described by a 4D effective theory, and when this effective theory

should be described by a 4D supergravity, by a supergravity supplemented by soft-breaking

terms, or by a generic non-supersymmetric field theory. Section 3 then follows with sim-

ple calculable examples of flux-induced mass terms for D3 and D7 branes, together with

a discussion of an approach to summarizing the warping dependence of the mass in the

low-energy 4D effective field theory. We describe aspects of phenomenology in § 4, and

then close in § 5 with a short summary and some concluding remarks.

2. Mass scales and effective descriptions

We now turn to a qualitative description of the scales which arise when higher-dimensional

supergravities are compactified on strongly warped geometries.2 With a view to phe-

2For some earlier general discussion of scales see [21]. For some discussion of the problems that arise in

trying to derive an N=1 SUGRA potential in the context of non-trivial warping see [19, 22] and [23]; for

discussion of a prescription to derive the potential and other aspects of the effective theory see [15].
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nomenological applications, our interest is in particular on the scales and the effective field

theory which are relevant to the 4D dynamics of the low-energy theory (possibly associated

with particles which are localized deep within a strongly warped region), with supersym-

metry broken in some other sector due to fluxes or some other supersymmetry-breaking

effects.

We start with a general description of the scales and effective theories which can

arise within strongly warped compactifications, before returning later to describe their

relevance for the scale of supersymmetry breaking as seen by observers localized in the

warped regions.

2.1 Mass scales in warped throats

Since many of the issues which arise for supersymmetry breaking in warped environments

are generic to the kinematics of warping, we start here by summarizing some general

properties of warped compactifications, together with examples from IIB compactifications.

2.1.1 KK excitations and scales

It is useful to begin with a reminder of the mass scales which arise within unwarped string

compactifications, having a product-space vacuum configuration

ds2 = ηµνdxµdxν + gmn(y)dymdyn , (2.1)

together with configurations for the other bosonic supergravity fields. Our conventions are

to use 10D indices M,N, . . . = 0, . . . , 9 for spacetime; 4D indices µ, ν, . . . = 0, . . . , 3 for

the observed (noncompact) dimensions; and 6D indices m,n . . . = 4, . . . , 9 for the hidden

(compact) dimensions.

For simplicity we restrict ourselves to geometries, gmn, whose volume and curvatures

are all characterized by a single scale: MKK = 1/L. Control over semiclassical calculations

typically requires both a small dilaton, gs = eφ ≪ 1, and small curvatures, α′/L2 ≪ 1,

and so MKK ≪Ms where M2
s = 1/α′ denotes the string scale. At scales below Ms massive

string modes can be integrated out, leaving an effective-field-theory description in terms

of a higher-dimensional supergravity.

When higher-dimensional fields are dimensionally reduced on such a space their lin-

earized fluctuations about this background are expanded in a complete set of Kaluza Klein

(KK) eigenmodes, e.g.

δφ(x, y) =
∑

k

ϕk(x)uk(y) , (2.2)

with mode functions uk(y) chosen as eigenfunctions of various differential operators arising

from the extra-dimensional kinetic operators, ∆uk = λkuk. The differential operator is

chosen so that the resulting 4D fields, ϕk(x), satisfy the appropriate field equations for a

particle having a mass mk, which is computable in terms of the corresponding eigenvalue

λk. This produces a tower of states having masses ranging between 0 and ∞ (for marginally

stable vacua), which are split in mass by ∆mk ∼ O(MKK).

The effective field theory describing energies smaller than MKK is a four dimensional

one, because there is insufficient energy to excite KK modes which can probe the extra
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dimensions. Conversely, although it is possible to think of the effective theory above MKK

as a complicated 4D theory involving KK modes and strong couplings, it is better to think

of it as being higher dimensional for several reasons, not least of which being that it is much

simpler to do so. Moreover, it is also true that the KK modes have masses reaching right up

to the UV cutoff, and so there is never a parametrically wide gap between the UV cutoff and

the mass of the heaviest mode. Furthermore, the 4D picture obscures higher-dimensional

spacetime symmetries, like general covariance and supersymmetry, whose presence is crucial

to the consistency of the theory.

For warped configurations the main difference is that the vacuum metric takes the

more general form

ds2 = e2A(y)ηµνdxµdxν + gmn(y)dymdyn , (2.3)

where the warp factor eA(y) varies in the extra dimensions. The physical interpretation of

the warp factor can be found by considering the energy of a test particle having mass m

and proper velocity uM . If the particle is stationary at a specific point, y0, in the extra

dimensions then the normalization condition, u2 = −1, implies uM = δM
0 e

−A(y0). The

four-dimensional energy of such a particle is then E = −mξMu
M = e2A(y0)u0m = eA(y0)m,

where ξM = δM
0 is the timelike Killing vector field corresponding to time translation. We

see that the energy of such a test particle is highly suppressed in strongly warped regions

where eA ≪ 1.

The KK reduction of fluctuations about such a space takes a form similar to eq. (2.2),

but with mode functions which diagonalize different differential operators and satisfy differ-

ent normalization conditions than in the unwarped case. For instance, a higher-dimensional

scalar fluctuation of ten dimensional mass m10, satisfies the equation

(⊔⊓10 −m2
10)Φ =

[

e−2Aηµν∂µ∂ν +
e−4A

√
g
∂m

(√
ge4Agmn∂n

)

−m2
10

]

Φ = 0 . (2.4)

Four-dimensional KK masses are given by eigenvalues of the operator

∆ = −e
−2A

√
g
∂m(

√
ge4Agmn∂n) + e2Am2

10, (2.5)

rather than operator ∆0 = −(1/
√
g)∂m(

√
ggmn∂n) +m2

10 which would have been used in

the absence of warping. Notice one effect of warping is to convert the 10D mass m10, into

a potential e2A(y)m2
10 for the wavefunctions of the KK excitations. For a wavefunction

localized in a region of large warping, with the local warp factor eA ≪ 1, one can expect a

redshifted four dimensional mass m ∼ m10e
A in accord with the preceding discussion.

In type IIB string theory, it is possible to write explicit solutions for warped compact-

ifications [2]. We shall use these solutions as our laboratory to study the effects of warped

throats on supersymmetry breaking. First, we review some features of these compactifica-

tions which shall be relevant for our discussion.

In these constructions, the geometry takes the form

ds210 = e2Aηµνdxµdxν + e−2Ag̃mn(y)dymdyn, (2.6)
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where g̃mn is a metric on Calabi-Yau of fiducial volume Ṽ = α′3. With this metric the

generic 4D KK masses for a scalar field satisfying (−⊔⊓10 + m2
10)Φ = 0 are given by the

eigenvalues of

∆ = −e
4A

√
g̃
∂m(

√

g̃g̃mn∂n) + e2Am2
10, (2.7)

rather than eq. (2.5).

The warp factor satisfies the equation of motion

−∇̃2e−4A =
GmnpḠ

gmnp

12 Imτ
+ 2κ2

10T3ρ̃
loc
3 (2.8)

where τ = C0 + ie−φ is the axio-dilaton, G3 = F3 − τH3 is the complex three-form field

strength, the tilde indicates indices raised with g̃mn, and ρ̃loc
3 represents localized sources

of D3-brane charge.

Given a particular solution e−4A0 of (2.8), we can always find a family of solutions [15]

with parameter c,

e−4A = e−4A0 + c . (2.9)

One convenient choice is to take the particular solution to be orthogonal to the zero mode

c,
∫

d6y
√

g̃ e−4A0 = 0 , (2.10)

which emphasizes that e−4A0 cannot then be everywhere positive. This agrees with the

statement that this quantity may become negative in regions of string-size around negative

tension objects, where the supergravity approximation fails.

For large c, in most parts of the manifold, the warp factor is approximately constant

and the background resembles that of a standard Calabi-Yau compactification. This Calabi-

Yau like region is often referred to as the bulk. In this case c sets the scale of the metric

over much of the bulk and so controls the overall size of the compactification, with

V =

∫

d6y
√
g6 ≈ c3/2

∫

d6y
√

g̃6 = c3/2Ṽ , (2.11)

and so c ≈ (V/Ṽ )2/3 ∝ V2/3, where V is the volume of the internal metric and V the

dimensionless volume relative to the string scale.

For later use, we also note the form of the metric associated with the four-dimensional

Einstein frame (which is related to (2.6) by rescaling the noncompact dimensions):

ds210 = λ[e−4A0 + c]−1/2ηµνdx
µdxν + [e−4A0 + c]1/2g̃mn(y)dymdyn, (2.12)

with
1

λ
=

1

Ṽ

∫

d6y
√

g̃(c+ e−4A0) , (2.13)

chosen to ensure a canonical 4D Einstein-Hilbert action. With the choice (2.10) this sim-

plifies to

λ =
1

c
∝ V−2/3 . (2.14)
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For generality we often quote results for arbitrary λ, bearing in mind the specialization to

Einstein frame through (2.13).

As shown in [2], regions of strong warping can arise in Type IIB vacua from typical

values of the flux quantum numbers. For instance, if M units of R-R flux and K units

of NS-NS flux wrap the A and B cycles of a conifold locus respectively, the solutions to

eq. (2.8) can become large, attaining a finite maximum value

e−4Am ≃ e8πK/3Mgs . (2.15)

We define a throat as a region where the relative redshift, Ω, is particularly large compared

to other points on the manifold. Since Ω is given by the ratio of eA at the two points

in question, and because the warp factor in the bulk is eA ≃ c−1/4, eq. (2.15) implies a

maximum redshift

Ωm =
(e−4Am + c)−1/4

c−1/4
=

(

1 +
e−4Am

c

)−1/4

, (2.16)

relative to the bulk. Note that this depends on the volume of the compactification through

its dependence on c ∝ V2/3. We have a strongly warped throat if

c≪ e−4Am (2.17)

and this redshift factor is large: Ωm ≃ eAmc1/4 ∝ eAmV1/6. The condition (2.17) moreover

implies that the geometry (2.6) in the throat region is largely independent of c and so also

of the overall volume of the compactification. If, on the other hand,

c≫ e−4Am (2.18)

then the relative redshift (2.16) tends to unity and the geometry is that of a usual Calabi-

Yau compactification.3

Fluxes generically introduce masses for complex structure moduli and the dilaton [2],

regardless of whether or not they break supersymmetry, and we pause here to describe how

these scale with V and e−4Am as a warm-up for our later discussion of the gravitino. The

mass spectrum of the excitations of the dilaton (which can be thought of as representative

of modes that acquire flux-induced masses) was studied in detail in [16], and is obtained

by linearizing the equations of motion [15] for the dilaton about the backgrounds of [2], as

described in previous sections. Linearizing the equation of the dilaton for an excitation with

four-dimensional mass m and wave-function in the internal direction τ(y), one obtains [15]

in this way4

λe4A∇̃2τ(y) +m2τ(y) =
gs

12
λe8AGmnpḠ

gmnpτ(y) . (2.19)

3This is in keeping with the fact that fluxes are α′ effects, and so all flux-induced effects should disappear

for sufficiently large volume. This argument also applies to settings other than type IIB.
4In obtaining (2.19) we have ignored mixing with the fluctuations of the three form and metric. We

shall use the equation only to give a qualitative explanation of the results of [16], a purpose for which these

fluctuations are not important.
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Notice that the ‘mass’ term generated by the flux,

gs

12
λe8AGmnpḠ

gmnp , (2.20)

is not a constant but varies non-trivially over the internal manifold.

In the bulk region, the metric g̃mn is of order unity, hence GmnpḠ
gmnp is of order n2

f ,

where nf is the flux quantum which measures the amplitude of G. Using e−4A ∼ c for the

bulk, we find

gsλe
8AGmnpḠ

gmnp ∼
λn2

f

V4/3
, (2.21)

leading to [15, 16]

mτ ∼ nf

√
λ

V2/3
. (2.22)

This should be compared with the scaling of a generic 10D or KK mass, such as those

implied by5 eq. (2.7):

M10 ∼ m10

√
λ

(

e−4Am + c
)−1/4 ∼

√
λ

V1/6
m10

and MKK ∼
√
λ

(

e−4Am + c
)−1/2 1

L
∼

√
λ

V1/3

1

L
, (2.23)

where L is a characteristic length scale measured using the metric g̃mn, and the last ap-

proximate equalities in both cases specialize to the bulk and use c ∝ V2/3.

In the throat region, by contrast, the underlying Calabi-Yau metric g̃mn has a shrink-

ing three cycle, and the presence of the fluxes makes the internal manifold (with metric

e−2Ag̃mn) have a characteristic length scale in this region of the order of
√

n′f in string

units, where n′f is an integer which quantizes the amplitude of fluxes threading the cycles

in the throat region.6 Provided the wave-function of the mode of interest is localized in

this throat region, we therefore expect GmnpḠ
mnp ∼ 1/n′f (and so GmnpḠ

gmnp ∼ e−6Am/n′f ,

where each factor of g̃mn contributes a power of e−2Am/n′f ). Hence at the bottom of the

throat we find

gsλe
8AGmnpḠ

gmnp ∼ λe2Am

n′f
, (2.24)

leading to a KK mass of order [16]

mτ ∼ eAm

√

λ

n′f
. (2.25)

For comparison, eqs. (2.23) give the following estimates for 10D masses and KK mode

energies in the strongly warped region

Mw
10 ∼

√
λ eAm m10

and Mw
KK ∼

√
λ e2Am

L
∼

√
λ eAm

ρ
, (2.26)

5Recall that λ ∼ V
−2/3, L ∼ 1 in our conventions and in the bulk m10 ∼ V

−1/2.
6For instance in the infrared end of the KS throat n′

f ∼ M , the flux threading the S3 of the conifold.
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where we again use that the cycle size measured by the metric g̃mn deep inside a throat

scales with the warping as L ∼ eAmρ, where ρ is warping independent.

One expects the dilaton to localize in the infrared end of the throat region and acquire

a mass of the order of (2.24) whenever it is energetically favorable to do so, i.e. when the

volume is small enough so that (2.24) is less than (2.21). This yields the condition

V2/3 <∼ e−Am , (2.27)

which is equivalent to c <∼ e−Am . Since c ∼ V2/3 ≫ 1, eq. (2.17) ensures this condition is

satisfied within a strongly warped throat.

The phenomenon of localization of massive modes should be fairly generic. As the

volume of the compactification decreases, the redshift (2.16) becomes more and more

prominent and one expects energetics to drive the wave-function of excitations into the

throat region, ensuring the localized mode is continuously connected to the lowest mode

in the regime (2.18). That is, as the volume of the compactification is decreased the wave-

function of the dilaton continuously varies from being uniformly spread throughout the

internal manifold to being highly localized in the throat. Furthermore, since the generic

KK mass gap in the strongly-warped regime (2.17) is of the same order as the mass (2.25),

all modes of the dilaton-axion should be integrated out of the effective field theory for the

majority of 4D applications.

Our analysis of the gravitino (to follow in section 3) finds similar effects. In the presence

of SUSY-breaking flux the wave-function of the lightest KK modes also localize into the

throat region. In what follows we shall confine our discussion to this strongly-warped

regime and examine its implications for SUSY breaking. But first we comment on various

important energy scales and possible effective descriptions in this regime.

2.1.2 Energy scales and effective descriptions in the strongly warped regime

Let us be more explicit about scales in the strongly-warped situation, with c <∼ e−Am .

The relevant energy scales are: the four-dimensional Planck mass Mp, which is the basic

scale in the Einstein frame and so convenient to set to unity. Notice that the bulk string

scale is Ms ∼∼ gsV−1/2, and the bulk KK scale in the Einstein frame is MKK ∼ V−2/3

in these units (recall eqs. (2.23) with λ ∼ V−2/3). Moreover, strong warping produces

the warped string scale Mw
s ∼ gse

AmV−1/3 and the warped Kaluza-Klein scale, Mw
KK ∼

gse
AmV−1/3/ρ ∼ Mw

s /ρ (c.f. eqs. (2.26)) where ρ > 1 is a characteristic length of the tip

of the throat (in units of the string length). Notice that the volume dependence of Mw
KK

and Mw
s is the same and they only differ somewhat by the factor ρ. This is an important

difference with respect to the bulk quantities since this implies that the tower of string

states and Kaluza-Klein states at the tip of the throat are not hierarchically different as V
gets large.

Based on this structure of scales we can distinguish the following energy regimes (and

effective theories which describe them) in strongly warped models.

1. E < Mw
KK : This energy range is below the mass of moduli that acquire flux induced

mass and all KK and string modes. The low-energy effective theory describing these
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energies is necessarily a 4D field theory. It contains light degrees of freedom (like the

Kähler moduli, which are massless until α′ corrections and non-perturbative effects

are accounted for [2, 5]).

2. Mw
KK < E < Mw

s : This energy range (which can exist if ρ ≫ 1) is below the mass

of all massive string states, warped or not, but contains a (finite) tower of those KK

modes which are localized deep within the warped region. Because all string modes

are massive, they can be integrated out leaving a low-energy effective theory which

in this case is an explicitly higher-dimensional field theory. This effective theory is

not the higher-dimensional field theory describing the full compact space. (If it were

it would include states having masses larger than MKK , which is larger than the

assumed cutoff.) Instead it only probes the warped geometry, with cutoff at a point

y = Y where the warp factor, eA(Y ), is no longer sufficiently small. This energy scale

represents both an UV cutoff (since it excludes KK and string states having energy

higher than eA(Y )/V1/3) and an IR cutoff, since the condition y < Y gives the space

a finite volume, providing an example of UV/IR mixing.

3. Mw
s < E < MKK :7 The effective theory for this energy range contains both massive

KK and string modes, as well as non-perturbative excitations like branes and black

holes, but again only those with strongly warped-suppressed spectra. As such, the

low-energy effective theory must be a string theory — again not the full string theory

with which one starts, but rather a string theory which lives only within the cut-off

volume of the warped geometry.

4. MKK < E < Ms: This energy range includes only strongly warped string modes,

but contains the KK modes of the higher-dimensional field theory. The low-energy

effective theory in this case would appear to consist of the string theory localized to

the warped region (as above), but coupled to the full set of supergravity modes which

can propagate outside of the warped region. Such a theory is somewhat novel and it

would be interesting to elucidate further its explicit description.

5. Ms < E: In this energy range the appropriate description is the full string theory,

defined in the entire higher-dimensional geometry. It is believed that this theory can

apply to arbitrarily high energies.

Cases 3 and 4 above may näıvely seem unusual inasmuch as they involve effective cut-off

string theories, with the strings propagating in nontrivial, but cut-off, higher-dimensional

background fields. They are indeed bona fide string theories since their cutoffs are much

higher than the masses of the lightest (strongly warped) string states. Of course, in the

light of AdS/CFT duality they seem less novel. One expects an alternate description of

both regimes 2 and 3 above in terms of a cutoff gauge theory with the appropriate relevant

deformation [24]. Moreover, one expects to be able to describe regime 4 in terms of the

7Since we are assuming large warping we are taking Mw
s < MKK . For small warping we can have

MKK < Mw
s and the regime MKK < E < Mw

s is the standard 10D supergravity, as in the usual unwarped

case.
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supergravity of the bulk manifold coupled to a cutoff gauge theory description of the throat

dynamics. This is a variant of the description of the effective field theory of the single brane

RS scenario [8] as that of a cutoff conformal field theory coupled to four-dimensional gravity

and other ultraviolet brane degrees of freedom [25, 26]. It would be interesting, but goes

beyond the scope of this article, to further investigate properties of such theories, and to

moreover understand the space of such possible theories and their possible deformations

through excitation of stringy modes above the threshold Mw
s .

We now put aside such discussion and instead ask how supersymmetry breaking man-

ifests itself in case 1.

2.2 Supersymmetry breaking

We next turn to the relevance of these various scales for supersymmetry breaking.

2.2.1 Supersymmetry breaking scales and warping

Consider, then, a higher-dimensional compactification of a supersymmetric field (or string)

theory. Although a generic compactification will break all of the supersymmetries of the

higher-dimensional theory, we choose to focus here on compactifications — like those con-

sidered for Type IIB vacua in ref. [2], say — chosen to preserve, or to approximately pre-

serve, one of these supersymmetries (from the 4D perspective). ‘Approximate’ conservation

here means that the scale associated with splittings within the various 4D supersymmetry

multiplets is sufficiently small, in a way made more precise below.

Any higher dimensional supersymmetry parameter, ε(x, y), consists of many indepen-

dent supersymmetries when viewed from the 4D perspective. Specifically, let a and α be

four- and six-dimensional spinor indices, respectively, so that the combination (aα) serves

as a ten-dimensional spinor index. Then ε can be expanded

εaα(x, y) =
∑

k

ǫak(x) η
α
k (y) (2.28)

in terms of an appropriate basis of 6D spinors, ηk(y), and each of the 4D spinors, ǫk(x),

defines a separate local 4D supersymmetry transformation, gauged by the appropriate 4D

component of the gravitino field,

Ψaα
µ (x, y) =

∑

k

ψa
µk(x) η

α
k (y) , (2.29)

with δψµk = Dµǫk+. . . under a supersymmetry transformation. We suppress spinor indices

in the sequel.

If precisely one 4D supersymmetry is unbroken then by assumption one of the spinor

modes, η0, is an appropriate “Killing spinor,” for which the corresponding gravitino mode

ψµ0 is precisely massless. Above this massless state will be a KK tower of massive 4D spin-

3/2 states, ψµk, whose lightest elements we expect to have mass ∼ MKK in an unwarped

environment, or ∼Mw
KK in a strongly warped environment. The unbroken supersymmetry

ensures that the physics below all of these scales is captured by an effective 4D supergravity.
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Imagine now breaking this last 4D supersymmetry, perhaps by turning on a nonzero

flux, a configuration of branes or non-perturbative effects. Then all supersymmetries are

broken, and in general there is no longer a uniquely defined gravitino which can be identified

as ‘the’ 4D gravitino, to the extent that an approximate 4D description is possible. Two

possible equivalent ways to define the 4D gravitino in this case are: (i) the gravitino

having the lightest nonzero mass, since this gauges the 4D supersymmetry which is the

least broken, and (ii) the gravitino which is adiabatically related to the massless gravitino

as parameters are adjusted to restore an unbroken 4D supersymmetry.

In this section we argue that for strongly-warped systems the spin-3/2 state to which

these lead has an extra-dimensional wave-function which is localized within the warped

region. As a consequence it generically does not couple with Mp-suppressed couplings

(unlike the massless 4D graviton), and so is unlikely to be approximately described by

a simple 4D supergravity. In this case an alternative definition of the 4D gravitino is

required, and experience with supersymmetric RS models [17, 18] suggests identifying

the 4D gravitino as the state which couples to the strongly interacting CFT in the dual

description of the strongly warped throat.8 In this dual picture all of the lightest gravitino

KK modes localized in the throat represent spin-3/2 resonances (similar to the massive KK

graviton modes), and the much-more-massive, ‘fundamental’ gravitino is the state whose

extra-dimensional wave-function most resembles that of the massless 4D graviton.

To study these issues in more detail, imagine turning on a supersymmetry breaking

background field that is not itself confined to the strongly warped region, and so has

an amplitude set by a scale, Λ̃, that is not warped. In what follows we take Λ̃ to be

bounded above by MKK , as would be the case for flux-generated SUSY breaking. The

quantity f = Λ̃/MKK
<∼ 1 is then a small (continuous or discrete) parameter, and one 4D

supersymmetry is restored in the limit that f → 0. As a result we know that when f → 0

all particles residing within the same 4D supermultiplet for this symmetry have precisely

the same mass, and in particular one of the 4D KK gravitino modes is precisely massless.

But for f 6= 0 all 4D supersymmetries are broken and all KK mode masses are perturbed

by an f -dependent amount which in general splits the masses of different particles residing

within the same 4D supersymmetry multiplet.

We now ask: When f 6= 0 how large are the splittings, ∆mk, within supermultiplets

of the least broken 4D supersymmetry? And in particular, how massive is the lightest 4D

gravitino? In the unwarped case, the answer for both questions would be m3/2 ∼ ∆mk ∼
fMKK . In warped geometries masses of the same order are generically also expected for

gravitino modes which are not localized within the strongly warped throat, such as for

the explicit truncation of the 10D gravitino to the mode which is massless in the limit

f → 0 [21],

Ψµ(x, y) = ψµ0(x) η0(y) . (2.30)

We emphasize that such behaviour is expected only in the neighbourhood of the region of

parameter space coresponding to f → 0, away from this limit one expects the wavefunction

of the gravitino to be modified and eventually to localize in the throat.

8We thank T. Gherghetta and A. Pomarol for useful discussions on these points.
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The next section, 2.2.2, shows that this same result is not true for the least broken

4D supersymmetry in warped geometries, whose gravitino is (by definition) the lightest

gravitino KK state. To this end we generalize our earlier discussion for the dilaton to see

how flux-induced gravitino KK masses scale with the parameters eAm , c and V in warped

geometries, and show that the lightest gravitino KK states are localized in the strongly

warped regions, with energies that are characterized by the warped KK scale. In this case

we argue that the mass of the least massive gravitino is warped to smaller values, being at

most of order the warped KK scale if Λ̃ is smaller than MKK :

m3/2 ∼ f ′Mw
KK , (2.31)

provided f ′Mw
KK ≪ fMKK . We quantify the size of the supersymmetry-breaking parame-

ters f and f ′ ≪ 1 below.

2.2.2 The gravitino mass

In this subsection we examine the gravitino equations of motion to obtain the criterion for

the localization of the gravitino wavefunction and its mass in this regime, and to obtain

estimates for the order of magnitude of the parameters f and f ′. We shall follow the

conventions in appendix B of [21] for the gravitino equations of motion, with κ = 1. First,

we set our gamma matrix conventions. The 10 dimensional gamma matrices ΓM satisfy

the algebra

{ΓM ,ΓN} = 2gMN . (2.32)

For the metric (2.12), we take

Γµ =
e−A

√
λ
γµ ⊗ 1 Γm = eAγc ⊗ γ̃m, (2.33)

where

{γµ, γν} = 2ηµν {γ̃m, γ̃n} = 2g̃mn, (2.34)

and γc = iγ0γ1γ2γ3 is the four dimensional chirality matrix. The gravitino equation of

motion is

ΓMNP D̂NΨP = − i

2
ΓP ΓM λ̂∗PP − i

48
ΓNPQΓM λ̂G∗

NPQ + O(Ψ3) (2.35)

where λ̂ is the dilatino, and PM is the field strength of the dilaton

PM =
1

1 −BB∗
∂MB , (2.36)

with

B =
1 + iτ

1 − iτ
. (2.37)

The supercovariant derivative acting on the gravitino is given by

D̂NΨP = DNΨP −RP ΨN − SP Ψ∗
N (2.38)
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with

RM =
i

480
(ΓM1...M5FM1....M5

)ΓM (2.39)

and

SM =
1

96
(Γ NPQ

M GNPQ − 9ΓNPGMNP ) . (2.40)

The complicated nature of the equations makes it difficult to find an explicit solution

corresponding to the massive 4D gravitino. In fact, it is not consistent to excite just the

fields Ψµ; as in the case of dilaton and complex structure moduli [15], one finds mixing be-

tween the various 10D supergravity modes while carrying out the KK reduction. Given the

intractable nature of the equations of motion, we shall use energetic arguments to determine

the condition for localization of the gravitino motivated by the observations (2.20), (2.27)

for the dilaton in section 2.1.1.

We take the four dimensional gravitino ψµ(x), to be embedded in the ten dimensional

gravitino as

Ψµ(x, y) = ψµ(x) ⊗ η(y) (2.41)

where η(y) is the wavefunction of the gravitino in the extra dimensions. Thus, components

of the gravitino equation of motion in the non-compact direction have the structure

e−3A

λ3/2
γµνρ∂νψρ ⊗ η(y) +

1

24λ
γµνγcψ

∗
ν ⊗ eAGmnpγ

gmnpη∗ + . . . . = 0 , (2.42)

where we have not explicitly written the contributions of the terms containing derivatives

of η(y) and other contributions neglected due to the specific form of our ansatz. The term

γµνρ∂νψρ (2.43)

is the standard kinetic term for a spin 3/2 field in four dimensions. One expects the mass

to be of the order of the relative strength of the kinetic term and the term involving fluxes

in (2.42). We assume that the terms not written explicitly in (2.42) scale in a similar way as

a function of the warping and Calabi-Yau volume as do the terms that are shown, justifying

their neglect in obtaining an estimate for the mass. This should be reasonable since all

such terms must adjust so that the equations can be satisfied, and appears confirmed by a

crude analysis of their effects in the equations of motion.

Comparing the kinetic and potential terms in (2.42) we find that the flux-induced mass

term for the gravitino varies across the internal manifold, and scales like

√
λe4AGmnpγ

gmnp . (2.44)

Keeping in mind that the gamma matrices scale like the “square root of the inverse metric,”

and comparing with (2.20), we see that the mass term has the same dependence on the

warp factor and the fluxes as the mass term for the dilation defined in (2.20). Thus, we

find for weak warping (c >∼ e−Am) a flux-induced gravitino mass of order

m3/2 ∝ ϑ

V , (2.45)
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where ϑ is the strength of supersymmetry breaking fluxes. In terms of the definition

f ∼ m3/2/MKK we therefore have

f ∼ ϑ

V1/3
. (2.46)

Similarly, for strong warping (c <∼ e−Am) the lightest gravitino wave-function localizes,

giving a mass of order (where λ ∼ V−2/3)

m3/2 ∝ ϑ′ eAm

√

λ

n′f
, (2.47)

and so f ′ = m3/2/M
w
KK is

f ′ ∼ ϑ′ρ
√

n′f

, (2.48)

where ϑ′ describes the relative strength of the SUSY breaking and supersymmetric fluxes

that thread cycles that are localized within the throat.

To summarize, the above arguments provide two estimates for the size of KK gravitino

masses arising from supersymmetry-breaking fluxes in warped geometries. In particular

we expect those KK modes which are not localized in the warped areas to generically

have masses which are of order ∆M ≡ fMKK ∼ ϑ/V . By contrast, for strongly warped

throats (i.e. those for which V2/3 ≪ e−Am) some gravitino modes can lower their masses

to ∆m ≡ f ′Mw
KK ∼ ϑ′eAm/

√

n′f V1/3 by localizing within the strongly warped areas.

2.2.3 The supersymmetric limit

We include the factors ϑ and ϑ′ in the above expressions in order to capture the fact

that fluxes can, but need not, break supersymmetry. Indeed, completely supersymmetric

warped geometries with fluxes exist, and this limit is captured in the above expressions

for m3/2 through the limit ϑ → 0. Notice also that the parameters f and f ′ can be made

systematically small, either by taking small ϑ, ϑ′ or large V or n′f . Being able to ensure

small f and f ′ is important in the next section, where we discuss the low-energy 4D effective

theory, and ask whether the mass of the lightest gravitino is hierarchically separated from

the mass of other excitations.

Before examining the implications of these scales for the low-energy effective 4D the-

ory, we first pause to argue that it is the lowest energy KK mode which is adiabatically

related to the massless gravitino in the supersymmetric limit, even though its localization

into the throat ensures that its extra-dimensional wave-function differs from the direct su-

persymmetric truncation, eq. (2.30). At first sight this is a surprising claim, particularly

if the supersymmetry breaking parameter f is small, because the mode (2.30) represents

the massless state when f → 0. And in perturbation theory it usually suffices to use

unperturbed eigenfunctions, ψ0, in order to find the leading-order correction to the corre-

sponding eigenvalues, δE ∼ (ψ0,Hintψ0), and so one might expect estimates based on the

supersymmetric gravitino wave-function to therefore capture the leading contributions to

the lightest nonzero gravitino mass once supersymmetry breaks.
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Yet we have seen that in the strongly warped regime the wave-function of the lightest

gravitino KK mode in the presence of supersymmetry breaking fluxes is localized in the

highly warped region and so differs significantly from the Killing spinor on the Calabi Yau.

This localization is responsible for the lowering of its mass to the warped KK scale, and is

not captured by an expression like δE ∼ (ψ0,Hintψ0) since this does not correct the wave-

function. The key point is that for warped geometries one must use degenerate perturbation

theory, because there are many unperturbed (supersymmetric) states having warped masses

which can be much smaller than the typical matrix element of the perturbation, fMKK .

Because of this degeneracy the system can minimize its energy in the presence of the

supersymmetry-breaking perturbation by choosing an appropriate linear combination of

states, which in the present instance are the states localized within the warped throat.

If we imagine adiabatically turning on an infinitesimal supersymmetry-breaking per-

turbation (or deepening the warping of a throat), we expect non-degenerate perturbation

theory to apply so long as fMKK ≪ f ′Mw
KK , and in this limit the wave-function of the light-

est gravitino KK mode should remain very close to the supersymmetric state, eq. (2.30).

However, once the supersymmetry-breaking flux is large enough that fMKK becomes larger

than f ′Mw
KK it becomes energetically favourable to concentrate into the throat, and so as

ϑ and ϑ′ are increased the lightest gravitino state continuously evolves into a localized

state with a warped flux-induced KK mass. In this sense the evolution of the gravitino

wave-function with increasing warping resembles the more familiar process of the repul-

sion of atomic energy levels or the resonant oscillations of neutrinos in matter.9 Further

discussion of the nature of the KK wave-functions in highly warped geometries and the

use of degenerate perturbation theory in this context is given in the appendix, where a toy

example is analyzed in more detail.

2.3 Criteria for supersymmetric low-energy actions

We have discussed, in section 2.1.2, when the low-energy action of a system should be

4-dimensional or higher dimensional, and how the existence of strongly warped throats

complicates the procedures which are used in unwarped situations. In this section we simi-

larly review the criteria for when the low-energy limit of a higher-dimensional supergravity

(or string) theory should be described by a (possibly spontaneously broken) supersymmet-

ric, or explicitly non-supersymmetric effective theory.

From the 4D point of view, higher dimensional supergravity theories broken by bulk

flux fields are special cases of ‘hidden sector’ models (for a review see [27]). In these

models there is a collection of low-energy fields, ℓa, of physical interest (describing, say,

Standard Model particles). These are assumed to be coupled to a more generic set of fields,

hm, whose dynamics somehow breaks supersymmetry. Although supersymmetry is badly

broken in the ‘hidden’ sector described by hm (with typical supermultiplet mass splittings

of order ∆M), the weak h−ℓ couplings ensure this is only weakly transmitted to the ‘light’

sector described by ℓa (whose supersymmetry breaking splittings are ∆m≪ ∆M). In the

best-case scenario these couplings are gravitational in strength. Notice that there is no

9We thank Henry Tye for comments on this point.
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requirement that the hidden-sector fields be light, although there is typically one state in

this sector, the goldstone fermion,10 which is much lighter than the others.

The form of the low-energy effective field theory which describes this kind of situation

below a UV cutoff, Λ, depends in an important way on the relative size of Λ, ∆M and

∆m, as follows.

1. ∆M ≪ Λ: If the cutoff is larger than all supersymmetry-breaking mass splittings then

the field content of the low-energy theory can be grouped into supermultiplets. In this

case the low-energy theory is itself described by a supergravity, even though it may

include some of the hidden-sector fields. Any spontaneous supersymmetry breaking

within the full theory can be understood within the effective theory as spontaneous

supersymmetry breaking due to the appearance of a SUSY-breaking v.e.v. purely

within the effective theory.

2. Λ ≪ ∆m: If the cutoff is well below the smallest SUSY-breaking scale, then a

generic supermultiplet has some elements which are heavier than Λ and so are inte-

grated out, while others are lighter than Λ and so remain in the low-energy theory.

In this case the field content of the low energy theory cannot be organized into su-

permultiplets (it might contain just fermions with no bosons, for example), and so

supersymmetry must be nonlinearly realized [28]. (Notice that for a gauge theory

a nonlinearly-realized spontaneous breaking is operationally indistinguishable from

explicit breaking within the low-energy theory below the breaking scale [29], and so

in this case the effective theory can be an arbitrary non-supersymmetric field theory.)

3. ∆m≪ Λ ≪ ∆M : If the cutoff lies between the two splitting scales, then there gener-

ically are supermultiplets in the hidden sector (split by ∆M) for which some particles

are heavier than Λ and so are integrated out, while others are lighter than Λ and so

remain in the low-energy theory. This is true in particular for the multiplet which

contains the goldstone fermion in the hidden sector. In this case supersymmetry is

generically badly broken in the effective theory. What distinguishes this case from

case 2 above, is that supersymmetry breaking is much smaller than Λ within the light

sector, which therefore has the field content to fill out complete supermultiplets. As a

result, provided we restrict our attention only to light-sector observables the breaking

of supersymmetry in this sector can be described as a supergravity coupled to a col-

lection of soft-breaking terms11 [30, 31] which encode the couplings to supersymmetry

breaking in the hidden sector.

For extra-dimensional supergravity without warping, the low-energy theory of interest

is often defined to cover energies smaller than the KK scale, MKK , and so consists of the

effective 4D interactions of the various KK zero modes. In this case we can regard the

10Or, more precisely, the massive gravitino which ‘eats’ it.
11By ‘soft breaking’ we do not here mean terms which do not generate quadratic divergences, but in-

stead have in mind the more general usage, spelled out in more detail below, in which supersymmetry

breaking arises through terms obtained by replacing hidden-sector auxiliary fields by their SUSY-breaking

expectation values.
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hidden sector to consist of the massive KK modes and the light sector to consist of the

low-energy KK zero modes. If supersymmetry is broken by extra-dimensional physics, such

as by fluxes, then the low-energy 4D theory below the KK scale in general need not be

supersymmetric. If, however, the mass splitting, ∆m ∼ fMKK , among the KK zero modes

satisfies ∆m ≪ MKK (and so f ≪ 1), the above discussion shows that the low-energy

theory can be an effective 4D supergravity (possibly coupled to soft-breaking terms which

capture the effects of integrating out parts of badly-split KK supermultiplets).

In the case with strong warping, we can take the light sector to consist of those modes

which are localized within the strongly warped region, whose masses are typically of order

Mw
KK or smaller. The hidden sector consists of those fields which are not so localized. We

have seen that supersymmetry-breaking splittings in the light sector are of order ∆m =

f ′Mw
KK while those in the hidden sector can be much larger, of order ∆M = fMKK .

(Figure 1 sketches some of the relevant scales for the light modes in the two cases, ∆m≪
∆M ≪ Mw

KK and ∆m ≪ Mw
KK ≪ ∆M .) A complicating feature in this case is that a 4D

description is not valid at all unless a hierarchy exists between the states of interest and

the generic warped KK scale Λ ≪ Mw
KK , and this generically need not be the case if all

of the light gravitino states are split by ∆m ∼ f ′Mw
KK , which is of the same order as the

lightest gravitino mass.

As a result, in the strongly warped case the absence of a clean hierarchy between

the scale of supersymmetry breaking and the onset of the extra-dimensional description

indicates we should generically not expect to obtain a low-energy description consisting

purely of a 4D supergravity, even supplemented by soft supersymmetry breaking terms.

Conversely, if a single gravitino were much lighter than the others, its interactions would be

well described by a 4D supergravity, and in particular would necessarily be suppressed by

the 4D Planck scale, Mp, as are those of its superpartner, the massless 4D graviton. How-

ever, the interactions of localized gravitino states in strongly warped regions are generically

suppressed at low energies only by a warped scale, such as Mw
KK , and so are generically

much stronger than are those of the massless 4D graviton.

These considerations suggest instead formulating the effective 4D theory in terms of

the dual variables, in terms of which the semiclassical geometrical degrees of freedom in the

throat are described by some sort of strongly interacting conformal field theory (CFT). In

this picture the stronger interactions of the tower of warped KK gravitons and gravitini are

regarded as expressing the relatively strong residual interactions amongst resonant spin-3/2

and spin-2 bound states of the CFT constituents, with the corresponding supersymmetries

being emergent symmetries associated with the strong CFT interactions.

The presence of a strongly-coupled CFT makes the criteria for describing this dual

system in terms of a 4D supergravity more complicated to formulate. However a generic

situation for which further progress is possible is in the case where we choose not to directly

measure properties of the CFT and instead integrate it out and ask for its implications

on other low-energy states (like the 4D graviton, bulk moduli, and so on). Provided the

couplings between these low-energy modes and the CFT are sufficiently weak the CFT

can simply act as a hidden sector, whose implications might be captured by a (possibly

softly broken) effective 4D theory. Because the 4D gravitino which would be relevant to
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Figure 1: Relevant scales for the localized modes at the infrared bottom of a throat. In the

case W0 ≪ V2/3eAmin , the effects of the fluxes are almost negligible and the system is nearly

supersymmetric. For V2/3eAmin ≫ W0, the effects of the fluxes however become important. The

masses of the unperturbed states Mw
KK

are much smaller than the flux scale and non-degenerate

perturbation theory no longer applies to this case. The shaded region shows the range of energies

at which an ultraviolet cutoff gives rise to a 4D supergravity description for the light modes.

such a theory would have couplings similar to the 4D graviton, it could be expected to be

a bulk state whose mass is of order fMKK, and so considerably heavier than the warped

KK scales. This more complicated situation is in the spirit taken by much of the model

building within supersymmetric 5D RS models [17, 18].

2.3.1 Effective 4D supersymmetry

Suppose first we consider case 1, for which all supersymmetry breaking scales are small

compared with the warped KK scale. (We might imagine this is arranged, for instance, by

appropriately choosing the parameter ϑ.) In this case we expect the low energy limit to be

given by a 4D effective supergravity, described, as usual, by a Kähler potential, K(ℓ, ℓ∗),

a superpotential, W (ℓ), and a gauge kinetic function, FAB(ℓ). For instance, leading order

calculations in Type IIB flux compactifications give

K = −2 lnV , and W = W0 , (2.49)

where V is the volume of the underlying Calabi-Yau space expressed as a function of its

holomorphic moduli, and W0 is the Gukov-Vafa-Witten superpotential [32], regarded as a
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function of the holomorphic complex structure moduli.

If all supersymmetries are broken by the fluxes in the underlying compactification,

N = 1 4D SUSY will be spontaneously broken in the 4D effective theory, leading to a mass

for the 4D gravitino of the form

m3/2 = eK/2 |W | =
|W0|
V , (2.50)

in the absence of strong warping. This uses the lowest-order results K = −2 lnV and

W = W0. We see that the freedom to dial fluxes to small values in the microscopic theory

to obtain small supersymmetry breaking effects is described in the low-energy theory by

the freedom to choose very small values for W0. Also, comparing this with (2.45) we find

the that in the regime that there is a four dimensional effective description, ϑ ∼ |W0|.
As discussed above, in the case of strong warping it is not generic that the low-energy

theory is well described by a 4D supergravity at all. However, it can happen that a 4D

supergravity can apply, even if there exist strongly warped regions. One such a case arises in

the supersymmetric limit, for which there is always a clear hierarchy between the massless

gravitino and the warped or unwarped KK scales. Suppose the low-energy matter sector

in this case consists of a strongly warped throat. The theory then contains warped states,

whose low-energy interactions with the supergravity sector can be of interest.

In such a case we would expect an effective 4D supergravity which must know about

the warped scale, and we now ask how this might be encoded into the low-energy theory.

Since the influence of fluxes in general arise at higher order in α′, the modifications to

the low-energy supergravity which encode this warping might be expected to arise as α′

corrections, and so in particular arise as modifications to K. (In principle the explicit form

for this warping dependence could be captured by matching to the underlying Calabi-Yau

dynamics, such as was done for 5D supersymmetric RS models in ref. [20], but calculations

are hampered in the 10D case by not knowing the explicit form for the underlying geometry

in this case.)

Part of the answer of how warping can enter K to describe states that are localized in

the throat is given by adding 2Am to K, since this provides an appropriate overall scaling

down of all masses (with fixed 4D Planck mass),

K(ℓ, ℓ∗) = 2Am + Ǩ(ℓ, ℓ∗) , (2.51)

with the holomorphic functions W and FAB unchanged. Such a constant piece does not

contribute at all to the Kähler metric, ∂a∂aK, or to the covariant derivative, DaW =

∂aW +W∂aK, but does have the effect of scaling the scalar potential by an overall factor:

U = e2AmǓ , where Ǔ is the scalar potential computed using the Kähler potential Ǩ. In

particular, the entire scalar mass matrix gets scaled by a corresponding amount, m2 =

e2Amm̌2. Fermion masses also get scaled down in an identical way, due to the ubiquitous

factor of eG/2 to which they are proportional, with

G = K + lnW + lnW ∗ . (2.52)

The 4D gravitino does not share this warping in the supersymmetric limit because it is

massless, by assumption. Such a constant contribution to K also appears as a leading
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term in a large-volume expansion of the Kähler function identified for supersymmetric RS

models [20].

2.3.2 4D action with softly broken supersymmetry

We next turn to the case of more direct phenomenological interest, case 3, wherein we

obtain our effective theory by integrating out a supersymmetry-breaking sector but keep

the goldstone fermion whose mixing with the 4D gravitino gives it its mass. In this case

we expect that if the SUSY-breaking sector couples sufficiently weakly to the observable

sector, then its supersymmetry-breaking effects can be encoded in the low-energy theory

by a suitable class of weakly-coupled soft-breaking interactions.

A warped example which is described by this type of soft breaking is obtained by

perturbing our earlier supersymmetric picture of a supersymmetric throat. Suppose we

now turn on a supersymmetry-breaking flux in the throat, but not by enough to localize

the lightest gravitino KK mode. More precisely, suppose f ′Mw
KK

>∼ fMKK even though

Mw
KK ≪ MKK , as would be possible if ϑ/ϑ′ <∼ eAmV2/3 ≪ 1 (and so, in particular, if

ϑ → 0). In this situation it does not energetically pay the lightest gravitino to localize,

allowing it to have Mp-suppressed couplings.12 Yet its mass is warped because this sets

the scale of the SUSY-breaking physics in the warped throat.

In this case we expect the low-energy theory below the bulk KK scale to be a 4D

supergravity coupled to a strongly interacting supersymmetric CFT describing the throat.

Alternatively, integrating out the CFT can lead to a softly-broken 4D supergravity de-

scribing the remaining, observable, sector provided only that the couplings to the CFT are

sufficiently weak. We now show that the generic warping of the resulting supersymmetry-

breaking masses may also be accomplished by the same shift as for the supersymmetric

case, K = 2Am + Ǩ.

To show this we require a statement of what the resulting soft-breaking interactions

might be. These have been enumerated in the literature [30, 31], under the assumption

that there is a regime for which the full theory — both ℓa’s and hm’s — is given by a 4D

N = 1 supergravity, described by an appropriate Kähler potential,13

K = K̂(h, h∗) + K̃ab(h, h
∗)ℓaℓb +

1

2
Zab(h, h

∗)ℓaℓb + · · · , (2.53)

as well as a superpotential, W , and gauge-kinetic function, FAB . (Here ℓa denotes (ℓa)∗.)

In this case the soft-breaking quantities can be computed in terms of the assumed coupling

12We could also entertain the possibility of f ′
≪ f and a light gravitino localized in the warped region.

While this is an interesting scenario, an explicit calculation supporting the existence of such a regime is not

available at present.
13Although in the previous section the hidden fields h included moduli and matter fields living far from

the throat, here they are understood to include only moduli which may survive at low energies (such as

Kähler moduli).
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functions and the SUSY-breaking hidden-sector auxiliary fields,

Fm = eG/2Kmn∂n̄G , (2.54)

using eq. (2.52). For instance, the resulting expressions for the scalar and gaugino masses

are [31]

m2
ab

= (m2
3/2 + V0)K̃ab −FmFn

(

∂m∂nK̃ab − K̃cd∂mK̃ad∂nK̃cb

)

MAB =
1

2

[

(ReF )−1
]

AC
Fm∂mFCB , (2.55)

where as before the gravitino mass is m3/2 = eK/2|W | and V0 is the value of the potential

at its minimum.

We again expect the low-energy theory to know that all of the nonzero masses asso-

ciated with localized states within the warped region are suppressed by a common factor

eAm . As may be seen from the above formulae, this can be done if the Kähler potential

contains an additive constant, which can be taken to be in the part describing the hidden

sector

K̂(h, h∗) = 2Am + K(h, h∗) , (2.56)

for essentially the same reason as for the supersymmetric case considered above. Such

a constant has the effect of scaling all of the supersymmetry breaking v.e.v.’s, Fm, by a

common factor of eAm , thereby ensuring that all masses are properly suppressed by the

warp factor.

Similarly, using eqs. (2.46) in the expression for the mass of the 4D gravitino itself

gives

m3/2 ∼ eAm eǨ/2W0 ∼ ϑ eAm

V1/3
, (2.57)

This can be used as a guide to determine the Kähler potential in the regime of strong

warping.

3. SUSY breaking in the microscopic theory

In this section we give examples of how visible-sector supersymmetry-breaking masses

might arise within a microscopic calculation within a warped environment. To this end

we compute the warp-factor dependence of the masses which are induced for some brane

moduli as a consequence of bulk fluxes.

3.1 Flux-induced masses on a D3-brane

We consider a D3-brane filling the non-compact dimensions of a generic GKP vacuum [2].

The matter content of the theory in the world-volume of the brane will contain six real

scalars Y m parameterizing the position of the D3-brane in the transverse space. The

dynamics of these scalars is described in terms of the corresponding Dirac-Born-Infeld

(DBI) and Chern-Simons (CS) actions

S3 = −|µ3|
∫

d4x e−φ
√

− det(P [E]) + µ3

∫

P [C4] + . . . , (3.1)
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where µ3 is the D3-brane charge, and P [E] denotes the pullback to the brane of the tensor

EMN = gMN +BMN . With brane coordinates (xµ, Y m(xµ)), this can be written

P [E]µν = Eµν + Emn∂µY
m∂νY

n + ∂µY
mEmν + ∂νY

nEµn . (3.2)

P [C4] similarly denotes the pull-back of the RR 4-form potential. One expects additional

terms in the CS piece due to the other RR fields, but these turn out to be irrelevant for the

purpose of computing the scalar masses, as one may check. The metric in these expressions

is the string-frame metric, which is related to (2.12) by an eφ/2 scaling factor,

ds2str = eφ/2
(

λe2A(y)ηµν dxµdxν + e−2A(y)g̃mn dymdyn
)

, (3.3)

with λ defined in (2.13).

Assuming a constant background for the ten dimensional dilaton, as generically hap-

pens in the absence of D7 branes, one easily shows that

√

− det(P [E]) = λ2e4Aeφ
[

1 +
1

2
λ−1e−4Ag̃mn∂µY

m∂µY n

]

(3.4)

where we keep only the terms relevant for the computation of the scalar masses and where

the internal metric g̃mn in (3.4) is evaluated at the position of the brane. From this we find

S3 ≃ −
∫

d4x

[

|µ3|
λ

2
g̃mn∂µY

m∂µY n + |µ3|λ2e4A − µ3C0123

]

. (3.5)

Thus the potential for a D3 position Y m is given by

V = λe4A − 1

λ
C0123 . (3.6)

This can be expanded around the minimum value e4Am to give the mass matrix,

V ≃ λe4Am +
∂m∂nV

2
Y mY n . (3.7)

The trace of the mass matrix can be computed (see e.g. [35, 36]) using the supergravity

equations [2]:

g̃mn∂m∂nV = λ∇̃2

(

e4A − 1

λ2
C0123

)

≃ λ
e8A

24 Imτ
(G3 + i∗̃6G3)mnp(Ḡ3 − i∗̃6Ḡ3)

gmnp . (3.8)

The fact that the scalar masses vanish for imaginary self dual fluxes can be traced back

to the no-scale structure of these Type IIB vacua [21, 37]. However, imaginary anti-self

dual components for the 3-form flux can be thought of as being induced by the backreaction

of effects which break the no-scale structure. Comparing (3.8) to (2.24), we find that the

flux-induced scalar masses evaluated in a warped throat are of the same size as both the

bulk moduli masses discussed there and the gravitino mass (2.47),

mY ∼ eAm
√
λ . (3.9)

Notice that, with very little effort, the computation can be extended to the case of

the scalar masses for a D3 brane, as its action differs only in the sign of the last term

in (3.5). Thus, the expression (3.9) remains valid for an antibrane, but now the left hand

side of (3.8) is proportional to the imaginary self dual components of the fluxes [36].

– 23 –



J
H
E
P
0
4
(
2
0
0
8
)
0
5
3

3.2 Flux-induced masses on a D7 brane

For D7 branes one can proceed as in the previous section. However, now the D7 brane

wraps a 4-cycle Σ in the extra dimensions. We consider a trivial normal bundle for the

embedding of Σ in the compact manifold, so there are just two geometric moduli Y i in

the four dimensional theory parameterizing the position of the D7-brane. We use 4D

indices α, β, . . . for the compact dimensions within the brane volume; and 2D indices i, j, . . .

for the compact dimensions transverse to the D7-brane. If we imagine the D7 to wrap

directions 4,5,6,7 of the compact space so that 8,9 denote the transverse directions, then

α, β, . . . = 4, . . . , 7 and i, j, . . . = 8, 9.

For simplicity, we only consider the reduction of the DBI piece of the action, which for

a D7-brane reads,

S7 = −|µ7|
∫

R4×Σ
d8ξ e−φ

√

− det(P [E]) . (3.10)

Notice that, as for D3-branes, one expects also contributions from the CS action, cancelling

part of the mass terms in the DBI piece.14 However, for the purpose of computing the warp

suppression of the scalar masses, it suffices to analyze the DBI contributions.

The pull-back (3.2) is then given by

P [E]µν = e2Aλeφ/2ηµν + e−2Aeφ/2g̃ij∂µY
i∂νY

j

P [E]αβ = e−2Aeφ/2g̃αβ +Bαβ , (3.11)

where we restrict ourselves to the case Bµν = 0 and ∂αY
i = 0. The two fields Y i(x) denote

low-energy fluctuations in the transverse position, yi = Y i(x), of the D7 brane.

Because of its block-diagonal structure, the determinant of P [E] becomes

det(P [E]) = (e2Aλeφ/2)4 det
[

ηµν + e−4Aλ−1g̃ij∂µY
i∂νY

j
]

×(e−2Aeφ/2)4 det
[

g̃αβ + e2Ae−φ/2Bαβ

]

, (3.12)

which, when expanded in powers of the fluctuations gives

√

− det(P [E]) = λ2e2φ
√

g̃4

(

1 +
1

2
e−4Aλ−1g̃ij∂µY

i∂µY j + · · ·
)

×
(

1 +
1

4
e4Ae−φBαβB

fαβ + · · ·
)

, (3.13)

where we denote det g̃αβ , the determinant of the pullback on the four cycle, by g̃4. We can

use this in the DBI action, working to quadratic order in the fluctuations; we assume that

the flux Bαβ is constant over the four cycle, and hence it does not induce Freed-Witten

anomalies [42] in the worldvolume of the brane. This gives

S7 = −|µ7|
∫

R4×Σ
d4xd4y

√

g̃4 e
φ

(

λ2+
1

2
e−4Aλg̃ij∂µY

i∂µY j+
1

4
e4Aλ2e−φBαβB

fαβ + · · ·
)

= −|µ7|
∫

d4x

(

V +
1

2
Gij∂µY

i∂µY j

)

(3.14)

14See [38] for further details.
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where the potential and kinetic terms are given by

V = λ2

∫

Σ
d4y

√

g̃4e
φ

[

1 +
1

4
e−φe4ABαβB

fαβ

]

, Gij = λ

∫

Σ
d4y

√

g̃4e
−4Aeφg̃ij . (3.15)

We are now in a position to see why the presence of a nonzero background flux,

Hmnp 6= 0, can generate a mass for the brane modulus Y i. Notice that since dB = H3, if

the normal to Σ has components along the cycle supporting H3, in the vicinity of Σ we

may write Bαβ ∼ HαβiY
i. This gives

BαβB
fαβ ∼ HαβiH

fαβ
jY

iY j , (3.16)

leading to a potential matrix Vij ∼ C λ2HαβiH
fαβ

j. A mass is produced if the D7 brane

wraps a cycle which overlaps the cycle which supports the nonzero flux.

Whether such masses break 4D supersymmetry or not depends on the details of the

fluxes involved. Using a complex basis in the compact dimensions, this mass can pre-

serve supersymmetry if the corresponding flux is purely of (2,1) or (1,2) type, and breaks

supersymmetry [39] if it contains fluxes of (3,0) or (0,3) type.

Since our interest is in tracking how masses depend on warping for states localized in

warped regions, it is instructive to specialize the above analysis to the special case where

the D7 brane is localized within such a region,15 analogously to our discussion of D3 branes.

Suppose then that the warp factor is eA(y) = eAm eA(y) throughout Σ, where eAm ≪ 1 and

eA(y) integrates over the cycle to give a result which is O(1) (notice that this implies that

the flux relevant for generating masses for D7 moduli is also nonzero in the highly warped

region, which is not the generic case). In this case, using the explicit formula for the warped

throat metric we find fluctuation Gij ∼ λe2Am and Vij ∼ λ2e4Am . Thus the mass for the

fields Y i is

mY ∼ eAm
√
λ ∼ eAm

V1/3
, (3.17)

which coincides with the ones obtained in the previous section for the geometric moduli of

a D3 brane.

3.3 Effective 4D description

We now record what would be the corresponding description of such flux-induced masses

for the brane geometric moduli from the point of view of the low-energy 4D theory. As

emphasized earlier, this is possible if the SUSY breaking fluxes are chosen to be sufficiently

small that it does not pay the lightest KK gravitino to become localized into the throat.

Because we explicitly consider fluxes localized in a warped throat, the supersymmetry

breaking sector lives in the warped region and the SUSY breaking scale is warped. We

consider in turn the cases where the flux preserves and breaks supersymmetry, and these

correspond to the two cases discussed above in sections 2.3.1 and 2.3.2. Our main interest

is in how the overall warp suppression factor, eAm , appears in the low-energy theory.

15For an example of such a construction, see [40].
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3.3.1 Unbroken supersymmetry

If the relevant flux does not break N = 1 4D supersymmetry then the effective 4D theory

is described by the standard supergravity lagrangian, within which the D-brane moduli

are represented by complex scalars residing within chiral supermultiplets. More precisely,

the D7 moduli are described by a single complex scalar Y , whereas the six geometric D3

moduli are arranged into three complex scalars, Ỹ a, with a = 1, 2, 3. We will discuss both

kind of moduli under the same context.

The appropriate choice of Kähler potential is found by inspecting the kinetic terms for

the D3 and D7 moduli, leading to the form K = 2Am + K, with

K = Kc(φ, φ
∗) +KY (φ, φ∗)Y ∗Y +KỸ a(φ, φ∗)Ỹ a∗Ỹ a + · · · , (3.18)

where φ collectively denotes all the other moduli and the ellipses denote terms involving

higher powers of Ỹ a, Y and their complex conjugates. We include an overall constant

2Am, as was argued above to be required in order to generically warp all nonzero masses

for localized states by a factor eAm . This additive factor does not affect the Ỹ a and Y

kinetic terms, however, so agreement with the microscopic calculation requires we also

choose

KY = |µ7| k(φ, φ∗) KỸ a = |µ3| ka(φ, φ∗) , (3.19)

with no Am dependence. For the present purposes the functions Kc, k and ka could be

arbitrary, although they are known explicitly for specific types of compactifications [41, 43,

44].

In this case the superpotential is not given only by the GVW form, since it also acquires

a dependence on the D7 moduli [38, 44] (see also [45, 46]), which we expand to lowest order

in Y :

W = WGV W (φ) +
µ7

2
w(φ)Y 2 + · · · . (3.20)

As for D7 branes in the unwarped regions, we will assume that w does not carry any factors

of the small quantity eAm .

The corresponding Kähler derivatives become

DỸ aW = ∂Ỹ aW +W∂Ỹ aK = µ3k
aỸ a∗WGV W + · · · , (3.21)

DYW = ∂YW +W∂YK = µ7

[

w Y + k Y ∗WGV W

]

+ · · · , (3.22)

which show that Ỹ a = Y = 0 does not break supersymmetry (or perturb the vacuum away

from vanishing potential V ).

In this case, keeping in mind the no-scale nature of the low-energy theory which ensures

that WGV W = V = 0 at the minimum, the scalar mass term for the brane moduli is given

by the contribution

V = eK
∑

Φ=Y,Ỹ a

|DΦW |2
KΦ

+ · · · = |µ7| e2AmeK
|w Y |2
k

+ · · · , (3.23)

Notice that the Y mass term now scales in the same way as it did in the microscopic

computation, whereas on the other hand, the D3 moduli remain massless, in agreement

with the no-scale structure of the potential.
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3.3.2 Broken supersymmetry

Next consider the case where the mass-generating flux breaks supersymmetry. Since the

supersymmetry-breaking field is not within the low-energy theory, and since the mass

splitting generated is much smaller than the generic KK mass, in this instance we expect

the effective 4D theory to be described by a 4D supergravity supplemented by soft-breaking

terms.

In this case the Y and Ỹ a kinetic terms are unchanged from the supersymmetric case,

and the additive term for K is also required to ensure that all generic masses are warped

by a factor of eAm , and so K = 2Am + K, with K given by eq. (3.18). The additional

suppression of the D7 modulus mass is then described by the relevant soft-breaking mass

terms in the scalar potential. Specializing the result given in eq. (2.55) to the case of a

diagonal metric, and canonically normalizing the kinetic terms, gives the following result

for the physical Y mass [6]

m2
Y = m2

3/2 −FmFn∂m∂n lnKY , (3.24)

where we use V0 = 0, and as before m3/2 = eK/2|W | and Fm is given by (2.54). Notice

that both terms of (3.24) include a factor of e2Am , so that the soft-breaking mass of Y

indeed has a factor of eAm .

Regarding the D3 moduli Ỹ a, due to the no-scale structure of the scalar potential for

these vacua, the gravitino mass is generically related to KỸ a in such a way that

m2
3/2 = FmFn∂m∂n lnKỸ a (3.25)

and the soft masses for the D3 brane moduli vanish, even though supersymmetry is being

broken.

In general the no-scale structure of the scalar potential is however spoiled by both α′

corrections and non-perturbative corrections to the superpotential, and the relation (3.25)

will not hold. In that case, the soft masses (2.55) for the Ỹ a scalars become

m2
Ỹ a = V0 +m2

3/2 −FmFn∂m∂n lnKỸ a , (3.26)

where we have taken again a diagonal metric and canonically normalized kinetic terms.

The value of the potential, V0, now is also generically different from zero and given by the

formula

V0 = eK
(

|DW |2 − 3|W |2
)

. (3.27)

Thus, from the scaling eK ∝ e2Am we find that in scenarios with broken no-scale structure

the soft masses for the D3 moduli are also suppressed by a eAm factor, in agreement with

the results obtained in section 3.1 from a microscopic point of view.

4. Towards phenomenology

Clearly our results may have interesting phenomenological implications. The study of soft

supersymmetry breaking in the KKLT scenario [47, 48] has not included the effects of warp-

ing, while existing studies of warping effects in phenomenology break SUSY through brane
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boundary conditions rather than fluxes (see e.g. [19]). Warping has only been considered

in the mechanism for lifting to de Sitter space, but in this scenario we expect the standard

model to appear from D-branes wrapping non-trivial cycles of the Calabi-Yau manifold,

and a natural possibility is that these D-branes lie in a strongly-warped region (for explicit

constructions in this direction see [49, 40]). This was actually part of the original moti-

vation in [2], since the redshift in a throat is a natural mechanism to solve the hierarchy

problem if the standard model sector lives on the tip of the throat. If the TeV scale super-

symmetry breaking throat is regarded in the dual picture as a strongly-interacting CFT,

then this can be regarded as a stringy realization of Witten’s proposal for understanding

the gauge hierarchy using dynamical supersymmetry breaking [50].

The substantial red-shifting due to the warp factor dependence of Mw
s implies that we

can consider different scenarios depending on the corresponding warped string scale which

can take any value between the electroweak scale (1 TeV) and the GUT scale (∼ 1017 GeV).

On the other hand, all the other relevant scales are also suppressed by the same warp

factor (and bulk volume dependence). As mentioned before, we expect the warped Kaluza-

Klein scale Mw
KK to take values somewhat smaller than Mw

s due to the characteristic

curvature scale 1/ρ of the tip of the throat. Furthermore, the gravitino mass and all soft

supersymmetry breaking terms are further reduced by factors controlling the amplitude

of the supersymmetry-breaking flux, ϑ, ϑ′. Choosing these quantities very small, such as

by localizing the sources of supersymmetry breaking into the warped throat allows the

gravitino mass to be hierarchically smaller than Mw
KK . Generically the lightest gravitino

is then localized in the throat, and describes a resonance in the dual CFT and is not

naturally well-described by a low-energy 4D supergravity. However, if the couplings of

the SUSY breaking physics in the throat to the gravitino are sufficiently weak, it may

not pay the lowest mass gravitino KK mode to localize, and a low-energy supergravity

action with standard soft supersymmetry breaking terms can be obtained. Notice that

when a 4D supersymmetric description is possible, small fluxes imply a small value for the

effective superpotential W0. (Although a very small W0 is also required in the original

KKLT scenario, this is for a very different reason: to have tree-level and non-perturbative

contributions to the potential to compete, and to justify neglecting of the perturbative

corrections to the Kähler potential.)

For Mw
KK ∼ Mw

s at the GUT scale, we require f ′ ∼ 10−13 to get a TeV gravitino.

(An unwarped proposal which resembles this scenario is discussed in [47].) It is not clear

that such scales can be understood in a controlled approximation, however, because the

conditions e−4Am ≫ V2/3 ≫ 1 and Mw
s /Mp ∼ eAm/V1/3 ∼ 102 then require a relatively

small volume. Smaller warped string scales arise more naturally in our scenario, including

two potentially attractive possibilities. Having the warped string scale at the intermedi-

ate scale, Mw
s ∼ 1011 GeV, could permit warped realizations of intermediate-scale string

scenarios [51], which are also attractive from the point of view of some string inflationary

models [4]. Getting a TeV gravitino mass in such models typically requires f ′ ∼ 10−7,

which puts W0 in the range of validity of the KKLT approximations.

Alternatively, if the warped string scale were of order Mw
s ∼ 10 TeV then f ′ ∼ 1/10,

would still justify the use of effective field theory. Since statistically speaking a very small
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value of W0 is not preferred, one might argue that having such a low warped string scale is

a more natural scenario to have. This would indicate a very interesting phenomenological

scenario with a very small string scale and approximately supersymmetric effective action

with soft SUSY breaking terms:

M1/2 ∼ m0 ∼ A ∼ m3/2 ∼ 1

10
Mw

s ∼ 1TeV (4.1)

As mentioned earlier, this can be considered as a stringy realization of the dual of the

dynamical supersymmetry breaking [50] approach to the hierarchy problem, with the ge-

ometrical picture of the exponential hierarchy being obtained from the warped geometry,

rather than from strongly coupled dynamics in the dual conformal field theory.

For W0 ∼ 1 we know that the KKLT approximations fail. In a large class of mod-

els [52] an exponentially large volume stabilization is obtained by including perturbative

corrections to the Kähler potential. But for very large volumes the effects of warping are

less and less important because the condition e−4Am ≫ V2/3 becomes more difficult to

satisfy. Interestingly enough, in our set-up, values of W0 >∼ 1 would imply a collapse of

the supersymmetric field theory approximation since the gravitino mass would be as heavy

as the KK and string modes. In this case we do not expect an effective supersymmetric

4D action to play any role and we may have to consider directly an effective string theory

phenomenology with distinctive signatures as compared with standard effective field theo-

ries, such as the presence of towers of KK and string states, etc. Alternatively, one might

describe this situation in terms of the AdS/CFT dual.

One might foresee further scenarios developing depending on the location and the

source of supersymmetry breaking as compared to the standard model.

5. Conclusions

In this paper we give a first step towards understanding the effective description of broken

supersymmetric theories in strongly warped throats. Warped compactifications are very

natural in IIB string theory [2, 53, 54] and provide a very rich, local and stringy scenario

to discuss supersymmetry breaking with potentially different properties from standard

scenarios of supersymmetry breaking in terms of gravity, gauge and anomaly mediation.

A typical compactification may have many throats and depending on the structure of

the fluxes on each throat, the physics in each of the throats can be very different. Therefore

within one single compactification we may have local models that feel differently the scale

of supersymmetry breaking and therefore different structure of soft-breaking terms. In a

large class of models this may not be describable in terms of effective 4D supergravities

since the gravitino mass will be degenerate with the string and KK scales.

If the flux superpotential is small enough, a natural hierarchy is generated between

the KK scale and the gravitino mass, justifying a supersymmetric effective field theory

treatment. The exponentially large warp factor is a natural source of hierarchy as in the

Randall-Sundrum model. In our case it provides the exponentially small scale of SUSY

breaking instead of dynamical SUSY breaking.
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Our investigation allowed us to solve a puzzle regarding what defines ‘the’ gravitino

of the low-energy 4D description. The natural notion from the extra-dimensional point

of view is the lightest KK mode of the higher-dimensional gravitino, since this gauges the

least broken 4D supersymmetry in the problem. This is also the state which is adiabatically

linked to the massless gravitino in the supersymmetric limit. However, in strongly warped

geometries this state prefers to be localized deep within the warped throat, and as a result

generically couples to other states with interactions that are suppressed by the warped scale,

rather than the 4D Planck scale. Such a state can be understood as a spin-3/2 resonance

of the strongly interacting CFT which provides the dual description of the throat. Indeed

it is generically not possible to capture the low-energy limit of such a system purely with

a 4D (possibly softly broken) supergravity.

However there are situations where this is possible, most notably when supersymmetry

breaking is localized within the throat but couples weakly enough that it does not make

it energetically worthwhile for the lightest gravitino to localize there. In this case the

4D gravitino is most easily identified in the dual theory by perturbing away from the

supersymmetric limit. Our analysis also leads us to suggest that the effective Kähler

potential for such a system is shifted by the warp function Am at the tip of the throat, but

a general interpolation between the regimes of weak and strong warping is unknown.

Finally, we identify several potentially interesting phenomenological scenarios depend-

ing on the amount of warping and the tuning of the flux superpotential W0. Further

investigation of the detailed phenomenology of these new scenarios is certainly desirable.

We also expect potential applications for cosmology, and in particular for inflationary sce-

narios depending on the existence of warping.
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A. Warping and degenerate perturbation theory

In this appendix we use the example of a bulk scalar in the Randall-Sundrum scenario [14]

as a toy model to discuss some features of KK reduction in highly warped regions. The KK

reduction can be carried out explicitly in this model, thus the model is helpful for build-

ing intuition. We use it to examine the common practice of identifying supersymmetry-

breaking mass shifts by truncating the KK reduction using supersymmetric configurations,

and show when this can be justified in terms of a perturbative analysis. We show in

particular why this analysis breaks down in the presence of strong warping.

Explicit diagonalization

Reference [14] considered a massive 5-d scalar

S =

∫

d5x
√
g( − ∂MY ∂MY −M2Y 2) (A.1)

in a finite domain of AdS (of radius R)

ds2 =
r2

R2
ηµνdx

µdxν +
R2

r2
dr2, r0 < r < R (A.2)

with Neumann boundary conditions at both ends.

Before discussing the KK reduction, we note that the above model has the essential

features to capture the dynamics of the gravitino in IIB constructions in the highly warped

regime (c ≪ e−Am). In the throat regions of IIB constructions, the metric typically fac-

torizes to an AdS5 ×X5 structure, for some manifold X5, and so the wavefunction has a

product structure. Thus, to understand the effects of warping it suffices to truncate to a

5D model. Also the ten dimensional mass term for the gravitino, e3AGmnpγ
gmnp is approx-

imately a constant in the throat region16 and typically scales as the inverse of the local

AdS radius. Thus the simplest model to consider is that of a minimal massive scalar (A.1)

with MR ∼ 1.

We give a brief outline of the results of explicit Kaluza-Klein reduction (for details

see [14]). For dimensional reduction, consider the 5D equations of motion for the ansatz

Y (x, r) =
∑

n

un(r)φn(x) (A.3)

with ∂µ∂
µφn = m2

nφn (mn are the four dimensional masses) . This yields an equation for

un

− 1

R4r
∂r(r

5∂run) +
r2

R2
M2un = m2

nun . (A.4)

A general solution to the differential equation (A.4) can be written in terms of Bessel

functions of order ν =
√

4 + (MR)2,

un(r) =
Nn

r2

[

Jν

(

mnR
2

r

)

+ bnYν

(

mnR
2

r

)]

(A.5)

16For a discussion see section 2.2.2 and related discussion of the dilaton mass term in section 2.1.1.
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where Nn and bn are constants. The masses mn and the constants bn are fixed by the

boundary conditions at r0, R. For large warping (r0/R ≪ 1) one finds that the masses are

determined by the equation

2Jν(xn) + xnJ
′
ν(xn) = 0 (A.6)

where xn = R2

ro
mn. In the regime RM ∼ 1, the lowest root of (A.6) is of the order of unity

and

m0 ∼ r0
R
M. (A.7)

The wavefunction (A.5) is highly localized in the region close to r0.

Perturbative analysis

It is illustrative to examine this result in the context of perturbation theory, since it provides

a toy example which shares many of the features which commonly arise when supersymme-

try is broken in an extra-dimensional model. In supersymmetric models it is often useful

to imagine turning on supersymmetry breaking in a parametrically small way, such as by

turning on a small flux. In this case our interest is often in the size of the SUSY-breaking

mass splittings which arise, as computed perturbatively in the SUSY-breaking parameter.

This kind of problem has an analogue in the present example in the limit of small M ,

since the model acquires a new symmetry in this limit corresponding to shifts of the form

Y → Y + ǫ. We therefore now consider computing the scalar mass in the small-M limit, in

order to compare the results obtained perturbatively with the exact results found above.

The perturbative methods that we discuss can also have applications to situations where

an explicit diagonalization is not possible.

To proceed we treat the term involving the five dimensional mass M in (A.4) as a

perturbation. We take the masses and wavefunctions of the unperturbed “hamiltonian” to

be µn and vn, i.e

− 1

R4r
∂r(r

5∂rvn) ≡ H0vn = µ2
nvn. (A.8)

In the absence of the five dimensional mass term, the lowest mode is massless (µ0 = 0)

and has a constant wavefunction. For the higher modes, the masses and wavefunctions

(µi, vi i > 0) are given by (A.5) and (A.6) with ν = 2. We note that the first roots of (A.6)

are of the order of unity, hence the scale of the unperturbed KK tower is

mKK ∼ r0
R2

. (A.9)

To set up the perturbative computation, we begin by introducing an inner product

〈a|b〉 =

∫ R

r0

dr ra(r)b(r) (A.10)

under which the unperturbed Hamiltonian, H0, for the KK states is hermitian. We nor-

malize vn as

〈vn|vm〉 = δnm. (A.11)
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Given the perturbation Hamiltonian

H ′ ≡ r2

R2
M2, (A.12)

the mass of the lowest mode in first order non-degenerate perturbation theory is

m2
0 = 〈v0|H ′|v0〉. (A.13)

With the normalization (A.11),

v0 ∼ 1

R
. (A.14)

Then (A.13) gives

m0 ∼M. (A.15)

This is the analogue of supergravity calculation which estimates the lowest gravitino KK

mass by evaluating the supersymmetry-breaking action using the Killing spinor which

defines the wavefunction of the mode which is massless in the supersymmetric limit.

Note that the perturbative result, eq. (A.15), is much larger than the correct value of

the mass of the lowest mode (A.7). First order non-degenerate perturbation theory fails

because the strength of the perturbation is large compared to the KK scale mass (A.9).

Under such a circumstance one expects the wavefunction of the lowest excitation (u0) to

be significantly different from the lowest mode in the absence of the perturbation due to

mixings between the zero mode (v0) and the KK modes (vi) introduced by the perturbation.

These mixings are not captured by first order non-degenerate perturbation theory which

does not incorporate the corrections to the wavefunction.

In situations where the KK scale is small compared to the strength of the perturbation,

a better perturbative tool is degenerate perturbation theory, since effectively the KK modes

(vi) and the zero mode (v0) are degenerate compared to the scale of the perturbation.

Typically, one has to include a large number of KK modes to obtain quantitatively reliable

results. Since our purpose here is to be illustrative we will include just one mode. We shall

see that this is sufficient to reproduce correct estimates.

For the purposes of estimate, we approximate the first KK mode by its power law

behavior; then with the normalization condition (A.11)

v1 ∼ r30
r4
. (A.16)

In the subspace spanned by v0 and v1, the perturbation H ′ has approximate matrix ele-

ments






M2 r3

0

R3 ln(R/r0)M
2

r3

0

R3 ln(R/r0)M
2 r2

0

R2M
2






. (A.17)

The lowest eigenvalue of the perturbation matrix (A.17) is of the order of
r2

0

R2M
2, which is

in agreement with (A.7).
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